1,699 research outputs found

    Aging specifically impairs switching to an allocentric navigational strategy

    Get PDF
    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.© 2012 Harris, Wiener and Wolbers

    An automated machine learning approach to predict brain age from cortical anatomical measures

    Get PDF
    The use of machine learning (ML) algorithms has significantly increased in neuroscience. However, from the vast extent of possible ML algorithms, which one is the optimal model to predict the target variable? What are the hyperparameters for such a model? Given the plethora of possible answers to these questions, in the last years, automated ML (autoML) has been gaining attention. Here, we apply an autoML library called Tree-based Pipeline Optimisation Tool (TPOT) which uses a tree-based representation of ML pipelines and conducts a genetic programming-based approach to find the model and its hyperparameters that more closely predicts the subject's true age. To explore autoML and evaluate its efficacy within neuroimaging data sets, we chose a problem that has been the focus of previous extensive study: brain age prediction. Without any prior knowledge, TPOT was able to scan through the model space and create pipelines that outperformed the state-of-the-art accuracy for Freesurfer-based models using only thickness and volume information for anatomical structure. In particular, we compared the performance of TPOT (mean absolute error [MAE]: 4.612 ± .124 years) and a relevance vector regression (MAE 5.474 ± .140 years). TPOT also suggested interesting combinations of models that do not match the current most used models for brain prediction but generalise well to unseen data. AutoML showed promising results as a data-driven approach to find optimal models for neuroimaging applications

    Structural neuroimaging measures and lifetime depression across levels of phenotyping in UK biobank

    Get PDF
    Depression is assessed in various ways in research, with large population studies often relying on minimal phenotyping. Genetic results suggest clinical diagnoses and self-report measures of depression show some core similarities, but also important differences. It is not yet clear how neuroimaging associations depend on levels of phenotyping. We studied 39,300 UK Biobank imaging participants (20,701 female; aged 44.6 to 82.3 years, M = 64.1, SD = 7.5) with structural neuroimaging and lifetime depression data. Past depression phenotypes included a single-item self-report measure, an intermediate measure of ‘probable’ lifetime depression, derived from multiple questionnaire items relevant to a history of depression, and a retrospective clinical diagnosis according to DSM-IV criteria. We tested (i) associations between brain structural measures and each depression phenotype, and (ii) effects of phenotype on these associations. Depression-brain structure associations were small (β < 0.1) for all phenotypes, but still significant after FDR correction for many regional metrics. Lifetime depression was consistently associated with reduced white matter integrity across phenotypes. Cortical thickness showed negative associations with Self-reported Depression in particular. Phenotype effects were small across most metrics, but significant for cortical thickness in most regions. We report consistent effects of lifetime depression in brain structural measures, including reduced integrity of thalamic radiations and association fibres. We also observed significant differences in associations with cortical thickness across depression phenotypes. Although these results did not relate to level of phenotyping as expected, effects of phenotype definition are still an important consideration for future depression research

    Factors Affecting Frequency Discrimination of Vibrotactile Stimuli: Implications for Cortical Encoding

    Get PDF
    BACKGROUND: Measuring perceptual judgments about stimuli while manipulating their physical characteristics can uncover the neural algorithms underlying sensory processing. We carried out psychophysical experiments to examine how humans discriminate vibrotactile stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Subjects compared the frequencies of two sinusoidal vibrations applied sequentially to one fingertip. Performance was reduced when (1) the root mean square velocity (or energy) of the vibrations was equated by adjusting their amplitudes, and (2) the vibrations were noisy (their temporal structure was irregular). These effects were super-additive when subjects compared noisy vibrations that had equal velocity, indicating that frequency judgments became more dependent on the vibrations' temporal structure when differential information about velocity was eliminated. To investigate which areas of the somatosensory system use information about velocity and temporal structure, we required subjects to compare vibrations applied sequentially to opposite hands. This paradigm exploits the fact that tactile input to neurons at early levels (e.g., the primary somatosensory cortex, SI) is largely confined to the contralateral side of the body, so these neurons are less able to contribute to vibration comparisons between hands. The subjects' performance was still sensitive to differences in vibration velocity, but became less sensitive to noise. CONCLUSIONS/SIGNIFICANCE: We conclude that vibration frequency is represented in different ways by different mechanisms distributed across multiple cortical regions. Which mechanisms support the “readout” of frequency varies according to the information present in the vibration. Overall, the present findings are consistent with a model in which information about vibration velocity is coded in regions beyond SI. While adaptive processes within SI also contribute to the representation of frequency, this adaptation is influenced by the temporal regularity of the vibration

    Disrupted limbic-prefrontal effective connectivity in response to fearful faces in lifetime depression

    Get PDF
    Background: Multiple brain imaging studies of negative emotional bias in major depressive disorder (MDD) have used images of fearful facial expressions and focused on the amygdala and the prefrontal cortex. The results have, however, been inconsistent, potentially due to small sample sizes (typically N &lt; 50 ). It remains unclear if any alterations are a characteristic of current depression or of past experience of depression, and whether there are MDD-related changes in effective connectivity between the two brain regions.Methods: Activations and effective connectivity between the amygdala and dorsolateral prefrontal cortex (DLPFC) in response to fearful face stimuli were studied in a large population-based sample from Generation Scotland. Participants either had no history of MDD ( N = 664 in activation analyses, N = 474 in connectivity analyses) or had a diagnosis of MDD during their lifetime (LMDD, N = 290 in activation analyses, N = 214 in connectivity analyses). The within-scanner task involved implicit facial emotion processing of neutral and fearful faces.Results: Compared to controls, LMDD was associated with increased activations in left amygdala ( PFWE = 0.031 , k E = 4 ) and left DLPFC ( PFWE = 0.002 , k E = 33 ), increased mean bilateral amygdala activation ( β = 0.0715, P = 0.0314 ), and increased inhibition from left amygdala to left DLPFC, all in response to fearful faces contrasted to baseline. Results did not appear to be attributable to depressive illness severity or antidepressant medication status at scan time.Limitations: Most studied participants had past rather than current depression, average severity of ongoing depression symptoms was low, and a substantial proportion of participants were receiving medication. The study was not longitudinal and the participants were only assessed a single time.Conclusions: LMDD is associated with hyperactivity of the amygdala and DLPFC, and with stronger amygdala to DLPFC inhibitory connectivity, all in response to fearful faces, unrelated to depression severity at scan time. These results help reduce inconsistency in past literature and suggest disruption of ‘bottom-up’ limbic-prefrontal effective connectivity in depression
    corecore